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A model of diffusion phase transformations in alloys with a tendency toward ordering is suggested. It ac-
counts for the vacancy mechanism of diffusion and the possible competition of the processes of ordering and
decomposition. It is shown that the spinodal decomposition into components A and B from a homogeneous in-
itial state may pass through the stage of formation of isolations of the ordered phase, with their stability
being qualitatively increased in the region of low temperatures. The growth of colonies on decomposition of
a metastable ordered state has been investigated.

Introduction. The physical properties of a substance are closely connected with its phase structure; therefore
the theory of the decomposition of alloys is of great interest. The equilibrium thermodynamics of transformations
[1, 2] allows one to predict the fractions of precipitates at long holding times. At the same time, the desired properties
of a substance are often realized during formation of metastable nonequilibrium structures, which requires the study of
the kinetics of transformations. The equations of evolution of a disordered alloy in spinodal decomposition (SD) were
suggested by Cahn and Hilard [3], followed by the construction of more consecutive microscopic models [4, 5], in-
cluding those for ordering alloys [6, 7]. However, usually the processes of ordering and decomposition are considered
separately, whereas in real systems they can exist simultaneously. Thus, in [8] a tendency toward ordering in the Au–
Fe system has been revealed; in [9] the possibility of ordering in the Ti–V alloy in the region of low temperatures is
discussed, the authors dealing in this case with the ordering that originates at intermediate stages of decomposition into
disordered phases, i.e., with a fundamentally nonequilibrium phenomenon.

The first theoretical investigation of intermediate ordered states was carried out in [10] in the language of On-
sager-type semi-phenomenological kinetic equations. Considered was a system having a local minimum of free mixing
energy corresponding to an ordered state at a certain concentration ratio of alloy components. By virtue of the pres-
ence of this minimum, the decomposition kinetics presupposes ordering even though the phase equilibrium curve pre-
serves a traditional form typical of a regular solid solution. However, computer modeling by the Monte Carlo method
[9] has revealed qualitative differences with the predictions made by that theory. Next, the topic was discussed in [7]
from methodical considerations; it was shown that a consecutive microscopic approach based on the fundamental ki-
netic equation leads to the breakdown of the intermediate ordered state whose picture is similar to the results of mod-
eling in [9]. However, as a whole, the problem has remained insufficiently studied. In particular, the kinetics of
spinodal decomposition from a homogeneous initial state with formation of intermediate ordered states has not been
studied in the language of consecutive microscopic approaches similar to those used in [7]; the conditions that deter-
mine the stability degree of ordered states also remain unclear.

In the present work the kinetics of ordering and decomposition is investigated within the framework of the
generalization of the hole gas method [11] that combines the simplicity of presentation with the consistency typical of
the microscopic method. It is shown that the spinodal decomposition of some alloys into components A and B may
proceed in two stages. First it proceeds with separation of an ordered phase and only subsequently the ordered phase
undergoes a further decomposition into components A and B. The kinetics of this process has not only some analogy
with the approach of [10] but also some differences and depends substantially on temperature. Also, the results of nu-
merical modeling of the process of decomposition of a metastable ordered phase into components A and B are pre-
sented. It is shown that it proceeds according to the mechanism of the growth of lamellar structures, is an activation
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one, and can be provoked by the distortions of the lattice in the region of the grain boundaries or by the presence of
a critical nucleus of the atoms of species A or B in the ordered phase.

1. Formulation of the Model. 1.1. Phase diagram. We will consider a binary alloy in which ordering is as-
sociated with the redistribution of atoms between two equivalent sublattices. In the quasi-chemical approximation [1],
the energy of the atoms of species σ = A, B that lie in the sub-lattice n = 1, 2 at the node with a radius-vector r is
determined by the equality

Eσ
(n)

 (r) =  ∑ 

σ′=A,B

  ∑ 

i,m

ϕσσ′
(nm)

 (qi) Cσ′
(m)

 (r + qi) .
(1)

Summation is taken over the nodes i of each sub-lattice m = 1, 2. After expansion in terms of qi Eq. (1) acquires the
form
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σ′=A,B

 Φσσ′
0

 Cσ′
(n)

 + R
2∆Cσ′

(n)
 + Φσσ′

+
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2∆Cσ′
(m)
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where Φσσ′0  = ∑ 

i

ϕσσ′
(nn)(qi); Φσσ′+  = ∑ 

i

ϕσσ′
(nm)(qi).

The small parameter R is considered to be a constant. An analysis of the zero-order terms of the expansion
in terms of R in (2) allows one to make general inferences on the thermodynamics of transformations. In particular,
using the reasoning similar to that applied in [1] and assuming random allocation of atoms in each of the sublattices,
for the free energy density of mixing one can easily obtain

f
kT

 = ΘηAηB + ΨCACB + ∑ 

σ,n

Cσ
(n)

 ln Cσ
(n)

 ,
(3)

where the dimensionless energies of mixing Ψ and ordering Θ are defined by the sum and difference of the sublattice
energies of mixing: Ψ = (χ0 + χ+) ⁄ (kT); Θ = (χ0 − χ+) ⁄ (kT); χ0(+) = 2ΦAB

0(+) − ΦAA
0(+) − ΦBB

0(+), whereas the degree of or-
dering and average concentration in sublattices are: ησ = (Cσ

(1) − Cσ
(2)) ⁄ 2, Cσ = (Cσ

(1) + Cσ
(2)) ⁄ 2. The value of ησ can be

calculated from the Bragg–Williams equation [1, 12]:

(Cσ − ησ) (1 − Cσ − ησ)

(Cσ + ησ) (1 − Cσ + ησ)
 = exp (− 2Θησ) .

(4)

Figure 1 presents the graphs of the function f(CA) at different ratios of the parameters Ψ > 0 and Θ > 0. Gen-
erally, the graph has three minima. The central minimum (CA = 0.5) is absolute provided that Θ > Ψ (curve 1); in this
case the ordered state is stable. At Θ = Ψ all minima have the same depth (curve 2), which corresponds to conven-
tional equilibrium of the ordered and disordered states. Finally, for Θ < Ψ (curve 3) the central minimum is local;
therefore the ordered states undergo a further decomposition — up to separation into components A and B. When
Θ < 0, ordering in an alloy is impossible, whereas with Ψ < 0 decomposition into components A and B is impossible.

Fig. 1. Free energy of mixing vs. the concentration of the component (Ψ = 6):
1) Θ > Ψ; 2) Ψ = Θ; 3) Θ < Ψ.
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Figure 2 presents the phase diagram that corresponds to the case Ψ > Θ > 0, where the tendency toward de-
composition dominates over the tendency toward ordering. The stability loss curves denoted by dashed lines were ob-

tained from the condition that 
δ2f

δCA
2  = 0 [1]. The curves of phase equilibria (solid lines) were obtained from the

condition of equality of the chemical potentials of phases by drawing tangents to the concave portions of the f(CA)

curve. In this case, the local minimum of f(CA) is responsible for the appearance of the curves of unstable (metastable)

equilibrium, one of which bounds region 5 and the other passes near the upper solid line, which is the curve of stable
equilibrium, and terminates at the temperature that corresponds to the apex of region 5.

1.2. Differential equations of the decomposition kinetics. The approach outlined represents the extension of the
hole gas method [11] to ordering alloys. The extension of the method to disordered alloys that undergo spinodal de-
composition was suggested earlier in [13, 14].

We will identify the concentrations Cσ(v)
(n) (r) of atoms of species σ = A, B and vacancies at the node r of the

sublattice n with the probabilities of finding them at that node. We assume that the occurring diffusion follows the va-
cancy mechanism and that jumps of atoms are possible between different sublattices and that pair correlations in the
distribution of atoms may be neglected (a regular solution [1]). Then the equations of the evolution of concentrations
have the form

dCσ
(n)

dt
 (r) = ∑ 

l=1

Z

ωσ
(m)

 (r + al → r) Cv
(n)

 (r) Cσ
(m)

 (r + al) − ωσ
(n)

 (r → r + al) Cv
(m)

 (r + al) Cσ
(n)

 (r) ,

CA
(n)

 + CB
(n)

 + Cv
(n)

 = 1 .

(5)

Equation (5) by its nature expresses the balance of substances: the change (per unit time) in the probability of detect-
ing atoms of species σ = A, B at the node r is composed of the probabilities of transition of the atoms of this species
from all the nodes of the closets surrounding to that node minus the probabilities of reverse transition. The frequencies
of transitions are given by the formulas

ωσ
(m)

 (r + al → r) = ωσ0 exp 

Eσ
(m)

 (r + al) − Eσ
s 

 ⁄ (kT) ,

Fig. 2. Phase diagram of an alloy with a tendency toward ordering (Ψ =
1.2Θ): 1) region of a stable alloy; 2) spontaneous decomposition into disor-
dered phases α and β; 3) spontaneous decomposition into phases α and β with
formation (at intermediate stages of the kinetics) of an ordered γ phase under-
going further decomposition nonactivative; 4) spontaneous decomposition into a
metastable ordered γ phase and a disordered α(β) phase with subsequent de-
composition of the γ phase following the mechanism of nucleation of nuclei; 5)
metastable ordered states.
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ωσ
(n)

 (r → r + al) = ωσ0 exp 

Eσ
(n)

 (r) − Eσ
s 

 ⁄ (kT) ,

(6)

with Eσ
(n) having been defined by Eq. (2); the energy of the atom at the saddle point Eσ

s  is considered to be a constant
for simplicity. Assuming that Cσ(v)

(n) (r) change slowly at distances of the order of a, in Eq. (5) we carry out a series
expansion in al and write out the equation of evolution of ησ and Cσ restricting ourselves to the first nonvanishing
terms:

dησ

dt
 = 

2

a
2 ωσ

(2)
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(2)
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(7)
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2
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(8)

ωσ
(n)

 (r) = ωσ0 exp 

Eσ
(n)

 (r) − Eσ
s 

 ⁄ (kT) .

(9)

From Eq. (7) it is seen that the ordering is a fast process as compared to diffusion. Therefore one may use the approxi-
mation of the locally equilibrium ordering by calculating the value of ησ that corresponds the local concentration Cσ.
In this case ωσ(2)Cσ(2)Cv

(1) = ωσ(1)Cσ(1)Cv
(2), whence, with consideration for Eq. (1), we obtain the Bragg–Williams equation

(4). The condition of transition from a disordered state to an ordered one can be represented as the limit ησ → 0 by
expanding Eq. (4) into a series in ησ, and it has the form 1 − ΘCACB = 0; the condition Θ = 4 determines the critical
temperature of the ordering. The maximum ordering ησ = % 1 ⁄ 2 is attained when T → 0 and Cσ = 1 ⁄ 2.

We will rewrite Eq. (8) in the approximation of locally equilibrium ordering and local equilibrium of vacan-
cies Jv → 0, JA + JB C 0, having selected, for the sake of definiteness, that σ = A and n = 1:

JA = 
Za

2ωA
(2)ωB

2)
CA
(2)

CB
(2)
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(1)

2 ωA
(2)
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(2)

 + ωB
(2)
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(2)
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 ∇ 






ln 



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CA
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


 + 
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(1)

 − EA
(1)

kT







 , (10)

where the expression for the gradient is expanded with the use of Eq. (2):

∇ 



ln 




CB
(1)

CA
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= − 

1 − ΨCA

(1)
CB
(1)
 ∇CA + 1 − ΘCA

(1)
CB
(1)
 ∇ηA − R

2
CA
(1)

CB
(1)∇ Θ∆ηA + Ψ∆CA





 ⁄ CA

(1)
CB
(1)
 .

(11)

The first term in (11) is attributable to the ascending diffusion on decomposition into disordered phases; the second
term — to the decomposition with separation of an ordered phase. The terms of the order of R2 are needed for de-
scribing the evolutions of concentrations in the region of interphase and antiphase boundaries and have a traditional
form [3, 4, 13, 14].

2. Kinetics of Transformations: the Results of Numerical Simulation. Investigation of the kinetics of de-
composition from a homogeneous initial state with small Gaussian fluctuations of the composition was carried out by
numerical solution of Eq. (7), using the standard Runge–Kutta method to represent Eqs. (10) and (11) for the flow on
a two-dimensional grid L × L. It was assumed that the distributions of concentrations are mirror-symmetric relative to
the boundaries of the considered quadratic region. For ησ locally equilibrium values obtained according to Bragg–Wil-
liams from Eq. (4) were used; for the concentration of vacancies it was adopted that Cv

(1) = const. In Figs. 3–6 for
sublattices 1 and 2 there correspond staggered pixels. In this case, the concentrations of the component A in each of
the sublattices are represented by gradients of gray color. Thus, the disordered regions are colored homogeneously,
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whereas in the ordered regions the cell structure of imaging is manifested. The time τ is given in the units of
Z(ωA0 + ωB0)Cv

(1)(a ⁄ L)2t ⁄ 2.
The calculations show that the decomposition of an alloy proceeds following one of three types depending on

the relationship between the energies Ψ and Θ. When Ψ > 4 > Θ, there is decomposition into disordered α- and β
phases (Fig. 3a). When Θ > Ψ, Θ > 4 there occurs decomposition into the ordered γ phase and disordered α(β) phase
(Fig. 3b). When Ψ > Θ > 4, the evolution of the system may pass through a stage of decomposition into the α(β)- and
γ phases, after which the ordered phase also undergoes decomposition (Fig. 3c), and the process continues up to com-
plete separation into α and β, i.e., the ordering appears at the intermediate stages of the kinetics.

The degree of stability of intermediate ordered states depends on temperature. If the parameters of an alloy lie
in the hatched region 3 of the phase diagram (see Fig. 2), then the γ phase undergoes a further decomposition without
activation (Fig. 4). However, on decrease in temperature the parameters of the alloy are displaced into the darkened
region 4 on decomposition from which the attainment of metastable equilibrium of the ordered and disordered phases
is possible. Therefore, a further decomposition is possible only by the mechanism of the formation of nuclei. The non-
active decomposition α + γ in region 4 of the phase diagram accompanied by an increase in the separation of the
phase β at the center of the region considered is presented in Fig. 5. This separation brought into the initial state en-
tirely absorbs the γ phase at long holding times.

In region 5 (see Fig. 2) the homogeneous alloy is ordered and stable against small fluctuations of composi-
tion; however, its decomposition can be activated either by the nuclei of the α(β) phases introduced into the initial
state or by the boundaries of grains. Figure 6 shows the growth of the colony from the grain boundary near which (in
the region of width 2R) the ordering energy Θ is lowered. Such a situation can be implemented, for example, in the
alloys that were subjected to intense plastic deformation and the lattice of which is heavily distorted and the thermo-
dynamic properties near the boundaries of grains were changed [15]. As a result of the development of the wave stage
of decomposition, a chain of equidistantly located isolations of the α- and β phases is formed along the boundary;

Fig. 4. Kinetics of spinodal decomposition of an alloy with a tendency toward
ordering from a homogeneous initial state with small Gaussian fluctuations
(CA0 = 0.3, L = 100R, Θ = 5, Ψ = 6): a) τ = 0.25; b) 1.1; c) 2.2.

Fig. 3. Characteristic pictures of the wave stage of alloy decomposition from a
homogeneous initial state with small Gaussian fluctuations (CA0 = 0.3, L =
100R, τ = 0.25): a) decomposition into α- and β phases at Θ = 0, Ψ = 7; b)
decomposition into γ- and β-phases at Θ = 7, Ψ = 5; c) intermediate ordering
on decomposition into α- and β phases at Θ = 5 and Ψ = 7.
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thereafter they grow into the bulk of the grain in the form of parallel lamels of identical width. At the developed
stages there occur ageing and destruction of lamels. Calculations show that at the higher temperatures that correspond
to region 3 of the phase diagram (see Fig. 2), the formation of lamellar microstructures on decomposition of the me-
tastable γ phase can also be induced by the isolations of the α(β) phases in the bulk of the grain. In such a case there
occurs a kind of autocatalysis, so that the isolations of the α phase favor the formation of isolations of the β phase
in its vicinity.

3. Discussion of Results. The model of the decomposition of a binary alloy proposed earlier [13, 14] has
been generalized to the case of solid solutions with a tendency toward ordering. The specific properties of the ap-
proach presuppose: a) account for the vacancy mechanism of diffusion by analogy with the "hole gas" method [11]
and b) the continuum approximation allowing one to use diffusion equations in partial derivatives similar to the
"phase-field" method and the Cahn–Hilliard SD model [3, 5]. The drawback of these equations is the use of many
model assumptions (locally equilibrium ordering, local equilibrium of vacancies, a smooth change of concentrations in
space, etc.). At the same time, they give a clearer representation than more rigorous approaches [6, 7], are more con-
venient for numerical analysis as compared to the Monte Carlo method [9, 16], and allow one to make general infer-
ences on the kinetics of transformations in alloys. The region of applicability of the approach is limited, generally
speaking, by the class of systems in which the width of the transient interphase region substantially exceeds the intera-
tomic distance (Fe–Al, Ni–Al, Co–Pt, etc.).

Within the framework of the model an analysis of three types of decomposition is possible, with the first two
having been studied in detail in [3–7]. However, the third, SD type that takes into account competition of the proc-
esses of ordering and decomposition has been inadequately considered earlier. In [10] intermediate ordered states were
predicted; however, the solution of Onsager-type equations has not revealed the possibility of simultaneous existence
of three phases in the system: A- and B-enriched and an ordered ones. The change in the composition of separations
of an ordered phase in [10] occurs as a result of nonactivative disordering. On the contrary, the analysis carried out

Fig. 6. Growth of a colony from the grain boundary on decomposition of a me-
tastable ordered phase provoked by a 40%-reduction in the energy of ordering
Θ in the boundary region of width 2R (L = 200R, CA0 = 0.5, Ψ = 6, Θ = 5):
a) τ = 1; b) 2, c) 5.

Fig. 5. Kinetics of spinodal decomposition of an alloy with a tendency toward
ordering from a homogeneous initial state with small fluctuations and separa-
tion of the α phase at the center (CA0 = 0.3, L = 100R, Θ = 6.5, Ψ = 7.8):
a) τ = 0.25; b) 1.5; c) 8.
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in the present work shows that the ordering is the result of decomposition into disordered and A- and B-enriched
phases, and, moreover, this decomposition requires activation in the region of low temperatures (see Fig. 5). In the re-
gion of elevated temperatures, the decomposition of the γ phase proceeds nonactivatively, but it also is controlled by
diffusion, since it occurs as a result of the outflow of the basic component into the neighboring disordered phase
through the separation surface. This is indicated, e.g., by the fact that finer separations of the ordered phase undergo
decomposition in the first place, whereas in large separations the decomposition develops in the portions that have the
greatest curvature of the surface.

The results obtained agree with [9], where the incipience of the A- and B-enriched phases from the interme-
diate ordered state was investigated by the Monte Carlo method. It was shown that the antiphase boundaries protrude
at the places of preferable incipience and the existence of three phases, A- and B-enriched and the ordered one, is pos-
sible at intermediate stages. It is interesting to note that in the calculations presented for a number of cases a correct
morphology of separations appears at developed stages of transformation. In particular, Fig. 6 demonstrates the lamella
microstructure appearing on the decomposition provoked by the grain boundary. An analysis of more complex but
qualitatively similar phenomena in steels such as perlite transformation (decomposition of the metastable austenite into
cementite and ferrite) [17, 18] has an important practical value, since the technical characteristics of steels (rigidity,
plasticity, etc.) are greatly determined by the morphology of separations.

Conclusions. The hole gas method of analysis [11] has been extended to ordering alloys undergoing spinodal
decomposition. It is shown that at intermediate stages of the kinetics the existence of there phases: A- and B-enriched
and an ordered ones is possible. The ordered phase is metastable in the region of low temperatures, so that its decom-
position needs activation. The decomposition of an ordered phase can be induced, e.g., by the grain boundary, and then
it proceeds following the mechanism of growth of the colony, which consists of parallel lamellas of identical width.

The author would like to express his gratitude to the Director of the Institute of Quantum Material Science,
Dr. Prof. Yu. N. Gornostyrev, for fruitful discussions.

NOTATION

a, parameter of the lattice, A° ; al, radius-vector of the nearest neighbor of an isolated atom, A° ; Cσ and Cσ0,
local sample-average concentrations of atoms of species σ, 0 ≤ Cσ ≤ 1 and 0 ≤ Cσ0 ≤ 1; Cσ

(n) and Cv
(n), local concentra-

tions of atoms of species σ and vacancies in sublattice n, 0 ≤ Cσ
(n) ≤ 1 and 0 ≤ Cv

(n) ≤ 1; Eσ
(n) and Eσ

s , energies of the
atom of species σ at the sublattice node n and at the saddle point s, eV; f, density of free mixing energy, eV; Jσ and
Jv, fluxes of atoms of species σ and vacancies, m ⁄ sec; k, Boltzmann’s constant, 8.6⋅10−5 eV ⁄ K; L, size of a sample,
A° ; N, number of nodes in a sublattice; qi, radius-vector of the relative position of the lattice node; r, radius-vector of
the relative position of a certain point in space, A° ; R, effective radius of interaction of atoms, A° ; t, time, sec; T, tem-
perature, K; Z, coordination number; α and β, phases enriched with atoms of species A and B, respectively; γ, ordered
phase; ησ, degree of ordering, −1 ⁄ 2 ≤ ησ ≤ 1 ⁄ 2; Θ, dimensionless energy of the ordering of an alloy; τ, dimensionless
time; ϕσσ′

nm , energy of pair interaction of atoms of species σ and σ′ located in sublattices n and m, respectively, eV;
Φσσ′

0  and Φσσ′
+ , energies of interaction of atoms of species σ with its "own" and "another’s" sublattice filled with

atoms of species σ′, eV; χ0, χ+, sublattice energies of mixing, eV; Ψ, dimensionless energy of alloy mixing; ωσ
(n), fre-

quency of passage of atoms of species σ from sublattice n, sec−1; ωσ0, value of ωσ
(n) for T → ∞, sec−1. Subscripts and

superscripts: i, node of sublattice, 1, ..., N; l, number of the closest neighbor of an atom, 1, ...,  N; n, m, Nos. of
sublattices 1 and 2; s, saddle point; v, vacancy; σ, σ′, species of atoms A and B.
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